datasets Archives - DBpedia Association https://www.dbpedia.org/blog/tag/datasets/ Global and Unified Access to Knowledge Graphs Mon, 12 Feb 2024 16:50:39 +0000 en-GB hourly 1 https://wordpress.org/?v=6.4.3 https://www.dbpedia.org/wp-content/uploads/2020/09/cropped-dbpedia-webicon-32x32.png datasets Archives - DBpedia Association https://www.dbpedia.org/blog/tag/datasets/ 32 32 DBpedia Snapshot 2022-12 Release https://www.dbpedia.org/blog/dbpedia-snapshot-2022-12-release/ Mon, 27 Mar 2023 09:36:32 +0000 https://www.dbpedia.org/?p=5585 We are pleased to announce immediate availability of a new edition of the free and publicly accessible SPARQL Query Service Endpoint and Linked Data Pages, for interacting with the new Snapshot Dataset.  News since DBpedia Snapshot 2022-09 Work in progress: Smoothing the community issue reporting and fixing at Github What is the “DBpedia Snapshot” Release? […]

The post DBpedia Snapshot 2022-12 Release appeared first on DBpedia Association.

]]>
We are pleased to announce immediate availability of a new edition of the free and publicly accessible SPARQL Query Service Endpoint and Linked Data Pages, for interacting with the new Snapshot Dataset. 

News since DBpedia Snapshot 2022-09

  • New Abstract Extractor due to GSOC 2022 (credits to Celian Ringwald) 

Work in progress: Smoothing the community issue reporting and fixing at Github

What is the “DBpedia Snapshot” Release?

Historically, this release has been associated with many names: “DBpedia Core”, “EN DBpedia”, and — most confusingly — just “DBpedia”. In fact, it is a combination of —

  • EN Wikipedia data — A small, but very useful, subset (~ 1 Billion triples or 14%) of the whole DBpedia extraction using the DBpedia Information Extraction Framework (DIEF), comprising structured information extracted from the English Wikipedia plus some enrichments from other Wikipedia language editions, notably multilingual abstracts in ar, ca, cs, de, el, eo, es, eu, fr, ga, id, it, ja, ko, nl, pl, pt, sv, uk, ru, zh.
  • Links — 62 million community-contributed cross-references and owl:sameAs links to other linked data sets on the Linked Open Data (LOD) Cloud that allow to effectively find and retrieve further information from the largest,  decentral, change-sensitive knowledge graph on earth that has formed around DBpedia since 2007. 
  • Community extensions — Community-contributed extensions such as additional ontologies and taxonomies. 

Release Frequency & Schedule

Going forward, releases will be scheduled for the 1th of February, May, August, and November (with +/- 5 days tolerance), and are named using the same date convention as the Wikipedia Dumps that served as the basis for the release. An example of the release timeline is shown below: 

December 6–8 December 8–20Dec 20–Jan 1Jan 1–Feb 15
Wikipedia dumps for June 1 become available on https://dumps.wikimedia.org/Download and extraction with DIEFPost-processing and quality-control periodLinked Data and SPARQL endpoint deployment 

Data Freshness

Given the timeline above, the EN Wikipedia data of DBpedia Snapshot has a lag of 1-4 months. We recommend the following strategies to mitigate this:

  1. DBpedia Snapshot as a kernel for Linked Data: Following the Linked Data paradigm, we recommend using the Linked Data links to other knowledge graphs to retrieve high-quality and recent information. DBpedia’s network consists of the best knowledge engineers in the world, working together, using linked data principles to build a high-quality, open, decentralized knowledge graph network around DBpedia. Freshness and change-sensitivity are two of the greatest data-related challenges of our time, and can only be overcome by linking data across data sources. The “Big Data” approach of copying data into a central warehouse is inevitably challenged by issues such as co-evolution and scalability. 
  2. DBpedia Live: Wikipedia is unmistakenly the richest, most recent body of human knowledge and source of news in the world. DBpedia Live is just minutes behind edits on Wikipedia,  which means that as soon as any of the 120k Wikipedia editors press the “save” button, DBpedia Live will extract fresh data and update.  DBpedia Live consists of the DBpedia Live Sync API (for syncing into any kind of on-site databases), Linked Data and SPARQL endpoint.
  3. Latest-Core is a dynamically updating Databus Collection. Our automated extraction robot “MARVIN” publishes monthly dev versions of the full extraction, which are then refined and enriched to become Snapshot.      

Data Quality & Richness

We would like to acknowledge the excellent work of Wikipedia editors (~46k active editors for EN Wikipedia), who are ultimately responsible for collecting information in Wikipedia’s infoboxes, which are refined by DBpedia’s extraction into our knowledge graphs. Wikipedia’s infoboxes are steadily growing each month and according to our measurements grow by 150% every three years. EN Wikipedia’s inboxes even doubled in this timeframe. This richness of knowledge drives the DBpedia Snapshot knowledge graph and is further potentiated by synergies with linked data cross-references. Statistics are given below

Data Access & Interaction Options

Linked Data

Linked Data is a principled approach to publishing RDF data on the Web that enables interlinking data between different data sources, courtesy of the built-in power of Hyperlinks as unique Entity Identifiers.


HTML pages comprising Hyperlinks that confirm to Linked Data Principles is one of the methods of interacting with data provided by the DBpedia Snapshot, be it manually via the web browser or programmatically using REST interaction patterns via https://dbpedia.org/resource/{entity-label} pattern. Naturally, we encourage Linked Data interactions, while also expecting user-agents to honor the cache-control HTTP response header for massive crawl operations. Instructions for accessing Linked Data, available in 10 formats.

SPARQL Endpoint

This service enables some astonishing queries against Knowledge Graphs derived from Wikipedia content. The Query Services Endpoint that makes this possible is identified by http://dbpedia.org/sparql, and it currently handles 7.2 million queries daily on averageSee powerful queries and instructions (incl. rates and limitations).

An effective Usage Pattern is to filter a relevant subset of entity descriptions for your use case via SPARQL and then combine with the power of Linked Data by looking up (or de-referencing) data via owl:sameAs property links en route to retrieving specific and recent data from across other Knowledge Graphs across the massive Linked Open Data Cloud.

Additionally, DBpedia Snapshot dumps and additional data from the complete collection of datasets derived from Wikipedia are provided by the DBpedia Databus for use in your own SPARQL-accessible Knowledge Graphs.

DBpedia Ontology

This Snapshot Release was built with DBpedia Ontology (DBO) version: https://databus.dbpedia.org/ontologies/dbpedia.org/ontology–DEV/2021.11.08-124002 We thank all DBpedians for the contribution to the ontology and the mappings. See documentation and visualizations, class tree and properties, wiki.

DBpedia Snapshot Statistics

Overview. Overall the current Snapshot Release contains more than 850 million facts (triples).

At its core, the DBpedia ontology is the heart of DBpedia. Our community is continuously contributing to the DBpedia ontology schema and the DBpedia infobox-to-ontology mappings by actively using the DBpedia Mappings Wiki.

The current Snapshot Release utilizes a total of 55 thousand properties, whereas 1377 of these are defined by the DBpedia ontology.

Classes. Knowledge in Wikipedia is constantly growing at a rapid pace. We use the DBpedia Ontology Classes to measure the growth: Total number in this release (in brackets we give: a) growth to the previous release, which can be negative temporarily and b) growth compared to Snapshot 2016-10): 

  • Persons: 1792308 (1.01%, 1.13%)
  • Places: 748372 (1.00%, 1820.86%), including but not limited to 590481 (1.00%, 5518.51%) populated places
  • Works 610589 (1.00%, 619.89%), including, but not limited to
    • 157566 (1.00%, 1.38%) music albums
    • 144415 (1.01%, 15.94%) films
    • 24829 (1.01%, 12.53%) video games
  • Organizations: 345523 (1.01%, 109.31%), including but not limited to
    • 87621 (1.01%, 2.25%) companies
    • 64507 (1.00%, 64507.00%) educational institutions
  • Species: 1933436 (1.01%, 322239.33%)
  • Plants: 7718 (0.82%, 1.71%)
  • Diseases: 10591 (1.00%, 8.54%)

Detailed Growth of Classes: The image below shows the detailed growth for one class. Click on the links for other classes: Place, PopulatedPlace, Work, Album, Film, VideoGame, Organisation, Company, EducationalInstitution, Species, Plant, Disease. For further classes adapt the query by replacing the <http://dbpedia.org/ontology/CLASS> URI. Note, that 2018 was a development phase with some failed extractions. The stats were generated with the Databus VOID Mod.

Links. Linked Data cross-references between decentral datasets are the foundation and access point to the Linked Data Web. The latest Snapshot Release provides over 130.6 million links from 7.62 million entities to 179 external sources.

Top 11

###TOP11###

33,975305 http://www.wikidata.org 

  7,206,254 https://global.dbpedia.org 

  4,308,772 http://yago-knowledge.org 

  3,855,108 http://de.dbpedia.org 

  3,731,002 http://fr.dbpedia.org 

  2,991,921 http://viaf.org 

  2,929,808 http://it.dbpedia.org 

  2,925,530 http://es.dbpedia.org 

  2,788,703 http://fa.dbpedia.org 

  2,587,004 http://ru.dbpedia.org 

  2,580,398 http://sr.dbpedia.org 

Top 10 without DBpedia namespaces

###TOP10###

33,975,305 http://www.wikidata.org 

  4,308,772 http://yago-knowledge.org 

  2,991,921 http://viaf.org

  1,708,533 http://d-nb.info 

     612,227 http://sws.geonames.org 

     596,134 http://umbel.org 

     537,602 http://data.bibliotheken.nl 

     430,839 http://www.w3.org 

     422,989 http://musicbrainz.org 

     104,433 http://linkedgeodata.org 

DBpedia Extraction Dumps on the Databus

All extracted files are reachable via the DBpedia account on the Databus. The Databus has two main structures:

Snapshot Download. For downloading DBpedia Snapshot, we prepared this collection, which also includes detailed releases notes: 

https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2022-03

The collection is roughly equivalent to http://downloads.dbpedia.org/2016-10/core/

Collections can be downloaded in many different ways, some download modalities such as bash script, SPARQL, and plain URL list are found in the tabs at the collection. Files are provided as bzip2 compressed n-triples files. In case you need a different format or compression, you can also use the “Download-As” function of the Databus Client (GitHub), e.g. -s $collection -c gzip would download the collection and convert it to GZIP during download. 

Replicating DBpedia Snapshot on your server can be done via Docker, see https://hub.docker.com/r/dbpedia/virtuoso-sparql-endpoint-quickstart 

git clone https://github.com/dbpedia/virtuoso-sparql-endpoint-quickstart.git

cd virtuoso-sparql-endpoint-quickstart

COLLECTION_URI=https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2022-09 VIRTUOSO_ADMIN_PASSWD=password docker-compose up

Download files from the whole DBpedia extraction. The whole extraction consists of approx. 20 Billion triples and 5000 files created from 140 languages of Wikipedia, Commons  and Wikidata. They can be found in https://databus.dbpedia.org/dbpedia/(generic|mappings|text|wikidata

You can copy-edit a collection and create your own customized (e.g.) collections via “Actions” -> “Copy Edit” , e.g. you can Copy Edit the snapshot collection above, remove some files that you do not need and add files from other languages. Please see the Rhizomer use case: Best way to download specific parts of DBpedia. Of course, this only refers to the archived dumps on the Databus for users who want to bulk download and deploy into their own infrastructure. Linked Data and SPARQL allow for filtering the content using a small data pattern.  

Acknowledgments

First and foremost, we would like to thank our open community of knowledge engineers for finding & fixing bugs and for supporting us by writing data tests. We would also like to acknowledge the DBpedia Association members for constantly innovating the areas of knowledge graphs and linked data and pushing the DBpedia initiative with their know-how and advice. OpenLink Software supports DBpedia by hosting SPARQL and Linked Data; University Mannheim, the German National Library of Science and Technology (TIB) and the Computer Center of University Leipzig provide persistent backups and servers for extracting data. We thank Marvin Hofer and Mykola Medynskyi for technical preparation. This work was partially supported by grants from the Federal Ministry for Economics and Climate Action (BMWK) for the LOD-GEOSS Project (03EI1005E), PenFLaaS (100594042) as well as for the PLASS Project (01MD19003D).

The post DBpedia Snapshot 2022-12 Release appeared first on DBpedia Association.

]]>
New Prototype: Databus Collection Feature https://www.dbpedia.org/blog/databus-collections-feature/ Thu, 14 Nov 2019 11:39:45 +0000 https://blog.dbpedia.org/?p=1280 We are thrilled to announce that our Databus Collection Feature for the DBpedia Databus has been developed and is now available as a prototype. It simplifies the way to bundle your data and use it in your application. A new Databus Collection Feature? How come, and how does it work? Read below and find out […]

The post New Prototype: Databus Collection Feature appeared first on DBpedia Association.

]]>
We are thrilled to announce that our Databus Collection Feature for the DBpedia Databus has been developed and is now available as a prototype. It simplifies the way to bundle your data and use it in your application.

A new Databus Collection Feature? How come, and how does it work? Read below and find out how using the DBpedia Databus becomes easier by the day and with each new tool.

Motivation

With more and more data being uploaded to the databus we started to develop test applications using that data. The SPARQL endpoint offers a central hub to access all metadata for datasets uploaded to the databus provided you know how to write SPARQL queries. The metadata includes the download links of the data files – it was, therefore, possible to pass a SPARQL query to an application, download the actual data and then use for whatever purpose the app had.

The Databus Collection Editor

The DBpedia Databus now provides an editor for collections. A collection is basically a labelled SPARQL query that is retrievable via URI. Hence, with the collection editor you can group Databus groups and artifacts into a bundle and publish your selection using your Databus account. It is now a breeze to select the data you need, share the exact selection with others and/or use it in existing or self-made applications.

If you are not familiar with SPARQL and data queries, you can think of the feature as a shopping cart for data: You create a new cart, put data in it and tell your friends or applications where to find it. Quite neat, right?

In the following section, we will cover the user interface of the collection editor.

The Editor UI

Firstly, you can find the collection editor by going to the DBpedia Databus and following the Collections link at the top or you can get there directly by clicking here.

What you will see is the following:

General Collection Info

Secondly, since you do not have any collections yet, the editor has already created an empty collection named “Unnamed” for you. At the right side next to the label and description you will find a pen icon. By clicking the icon or the label itself you can edit its content. The collection is not published yet, so the Collection URI is blank.

Whenever you are not logged in or the collection has not been published yet, the editor will also notify you that your changes are only saved in your local browser cache and NOT remotely on our server. Keep that in mind when clearing your cache. Publishing the collection however is easy: Simply log into (or create) your Databus account and hit the publish button in the action bar. This will open up a modal where you can pick your unique collection id and hit publish again. That’s it!

The Collection Info section will now show the collection URI. Following the link will take you to the HTML representation of your collection that will be visible to others. Hitting the Edit button in the action bar will bring you back to the editor.

Collection Hierarchy

Let’s have a look at the core piece of the collection editor: the hierarchy view. A collection can be a bundle of different Databus groups and artifacts but is not limited to that. If you know how to write a SPARQL query, you can easily extend your collection with more powerful selections. Therefore, the hierarchy is split into two nodes:

  • Generated Queries: Contains all queries that are generated from your selection in the UI
  • Custom Queries: Contains all custom written SPARQL queries

Both, hierarchy nodes have a “+” icon. Clicking on this button will let you add generated or custom queries respectively.

Custom Queries

If you hit the “+” icon on the Custom Queries node, a new node called “Custom Query” will appear in the hierarchy. You can remove a custom query by clicking on the trashcan icon in the hierarchy. If you click the node it will take you to a SPARQL input field where you can edit the query.

To make your collection more understandable for others, you can even document the query by adding a label and description.

Writing Your Own Custom Queries

A collection query is a SPARQL query of the form:

SELECT DISTINCT ?file WHERE {
    {
        [SUBQUERY]
    }
    UNION
    {
        [SUBQUERY]
    }
    UNION
    ...
    UNION
    {
        [SUBQUERY]
    }
}

All selections made by generated and custom queries will be joined into a single result set with a single column called “file“. Thus it is important that your custom query binds data to a variable called “file” as well.

Generated Queries

Clicking the “+” icon on the Generated Queries node will take you to a search field. Make use of the indexed search on the Databus to find and add the groups and artifacts you need. If you want to refine your search, don’t worry: you can do that in the next step!

Once the artifact or group has been added to your collection, the Add to Collection button will turn green. Once you are done you can go back to the Editor with Back to Hierarchy button.

Your hierarchy will now contain several new nodes.

Group Facets, Artifact Facets and Overrides

Group and artifacts that have been added to the collection will show up as nodes in the hierarchy. Clicking a node will open a filter where you can refine your dataset selection. Setting a filter to a group node will apply it to all artifact nodes unless you override that setting in any artifact node manually. The filter set in the group node is shown in the artifact facets in dark grey. Any overrides in the artifact facets will be highlighted in green:

Group Nodes

A group node will provide a list of filters that will be applied to all artifacts of that group:

Artifact Nodes

Artifact nodes will then actually select data files which will be visible in the faceted view. The facets are generated dynamically from the available variants declared in the metadata.

Example: Here we selected the latest version of the databus dump as n-triple. This collection is already in use: The collection URI is passed to the new generic lookup application, which then creates the search function for the databus website. If you are interested in how to configure the lookup application, you can go here: https://github.com/dbpedia/lookup-application. Additionally, there will also be another blog post about the lookup within the next few weeks

Use Cases

The DBpedia Databus Collections are useful in many ways.

  • You can share a specific dataset with your community or colleagues.
  • You can re-use dataset others created
  • You can plug collections into databus-ready applications and avoid spending time on the download and setup process
  • You can point to a specific piece of data (e.g. for testing) with a single URI in your publications
  • You can help others to create data queries more easily

We hope you enjoy the Databus Collection Feature and we would love to hear your feedback! You can leave your thoughts and suggestions in the new DBpedia Forum. Feedback of any kinds is highly appreciated since we want to improve the prototype as fast and user-driven as possible! Cheers!

A big thanks goes to DBpedia developer Jan Forberg who finalized the Databus Collection Feature and compiled this text.

Yours

DBpedia Association

The post New Prototype: Databus Collection Feature appeared first on DBpedia Association.

]]>
The Release Circle – A Glimpse behind the Scenes https://www.dbpedia.org/blog/the-release-circle-a-glimpse-behind-the-scenes/ Wed, 17 Oct 2018 10:43:19 +0000 https://blog.dbpedia.org/?p=1033 As you already know, with the new DBpedia strategy our mode of publishing releases changed.  The new DBpedia release process follows a three-step approach starting from the Extraction to ID-Management towards the Fusion, which finalizes the release process.  Our DBpedia releases are currently published on a monthly basis. In this post, we give you insight into the […]

The post The Release Circle – A Glimpse behind the Scenes appeared first on DBpedia Association.

]]>
As you already know, with the new DBpedia strategy our mode of publishing releases changed.  The new DBpedia release process follows a three-step approach starting from the Extraction to ID-Management towards the Fusion, which finalizes the release process.  Our DBpedia releases are currently published on a monthly basis. In this post, we give you insight into the single steps of the release process and into what our developers actually do when preparing a DBpedia release.

Extraction  – Step one of the Release

The good news is, our new release mode is taking shape and noticeable picked up speed. Finally the 2018-08 and, additionally the 2018.09.12 and the 2018.10.16 Releases are now available in our LTS repository.

The 2018-08 Release was generated on the basis of the Wikipedia datasets extracted in early August and currently comprises 136 languages. The extraction release contains the raw extracted data generated by the DBpedia extraction-framework. The post-processing steps, such as data-deduplication or URI-normalization are omitted and moved to later parts of the release process. Thus, we can provide direct, transparent access to the generated data in every step. Until we manage two releases per month, our data is mostly based on the second Wikipedia datasets of the previous month. In line with that, the 2018.09.12 release is based on late August data and the recent 2018.10.16 Release is based on Wikipedia datasets extracted on September 20th. They all comprise 136 languages and contain a stable list of datasets since the 2018-08 release.

Our releases are now ready for parsing and external use. Additionally, there will be a new Wikidata-based release this week.

ID-Management – Step two of the Release

For a complete “new DBpedia” release the DBpedia ID-Management and Fusion of the data have to be added to the process. The Databus ID Management is a process to unify various different IRIs identifying the same entities coined from different data providers. Taking datasets with overlapping domains of interest from multiple data providers, the set of IRIs denoting the entities in the source datasets are determined heuristically (e.g. excluding RDF/OWL types/classes).

Afterwards, these selected IRIs a numeric primary key, the ‘Singleton ID’. The core of the ID Management process happens in the next step: Based on the large set of owl:sameAs assertions in the input data with high confidence, the connected components induced from the corresponding sameAs-graph is computed. In other words: The groups of all entities from the input datasets (transitively) reachable from one to another are determined. We dubbed these groups the sameAs-clusters. For each sameAs-cluster we pick one member as representant, which determines the ‘Cluster ID’ or ‘Global Identifier’ for all cluster members.

Apart from being an essential preparatory step for the Fusion, these Global Identifiers serve purpose in their own right as unified Linked Data identifiers for groups of Linked Data entities that should be viewed as equivalent or ‘the same thing’.

A processing workflow based on Apache Spark to perform the process described on above for large quantities of RDF input data is already in place and has been run successfully for a large set of DBpedia inputs consisting of:

 

Fusion – Step three of the Release

Based on the extraction and the ID-Management, the Data Fusion finalizes the last step of the  DBpedia release cycle. With the goal of improving data quality and data coverage, the process uses the DBpedia global IRI clusters to fuse and enrich the source datasets. The fused data contains all resource of the input datasets. The fusion process is based on a functional property decision to decide the number of selected values ( owl:FunctionalProperty determination ). Further, the value selection for this functional properties is based on a preference dependent on the originated source dataset. For example, preferred values for En-DBpedia over DE-DBpedia.

The enrichment improves entity-properties and -values coverage for resources only contained in the source data. Furthermore, we create provenance data to keep track of the origin of each triple. This provenance data is also used for the http-based http://global.dbpedia.org resource view.

At the moment the fused and enriched data is available for the generic, and mapping-based extractions. More datasets are still in progress.  The DBpedia-fusion data is uploading to http://downloads.dbpedia.org/repo/dev/fusion/

Please note we are still in the midst of the beta testing for our data release tool, so in case you do come across any errors, reporting them to us is much appreciated to fuel the testing process.

Further information regarding the releases progress can be found here: http://dev.dbpedia.org/

Next steps

We will add more releases to the repository on a monthly basis aiming for a bi-weekly release mode as soon as possible. In between the intervals, any mistakes or errors you find and report in this data can be fixed for the upcoming release. Currently, the generated metadata in the DataID-file is not stable. This will fluctuate, still needs to be improved and will change in the near future.  We are now working on the next release and will inform you as soon as it is published.

Yours DBpedia Association

This blog post was written with the help of our DBpedia developers Robert Bielinski, Markus Ackermann and Marvin Hofer who were responsible for the work done with respect to the DBpedia releases. We like to thank them for their great work. 

 

The post The Release Circle – A Glimpse behind the Scenes appeared first on DBpedia Association.

]]>
Beta-Test Updates https://www.dbpedia.org/blog/beta-test-updates/ Thu, 13 Sep 2018 09:04:14 +0000 https://blog.dbpedia.org/?p=927 While everyone at the DBpedia Association was preparing for the SEMANTiCS Conference in Vienna, we also managed to reach an important milestone regarding the beta-test for our data release tool. First and foremost, already 3500 files have been published with the plugin. These files will be part of the new DBpedia release and are available […]

The post Beta-Test Updates appeared first on DBpedia Association.

]]>
While everyone at the DBpedia Association was preparing for the SEMANTiCS Conference in Vienna, we also managed to reach an important milestone regarding the beta-test for our data release tool.

First and foremost, already 3500 files have been published with the plugin. These files will be part of the new DBpedia release and are available on our LTS repository.

Secondly, the documentation of the testing has been brought into good shape. Feel free to drop by and check it out.
Thirdly, we reached our first interoperability goal. The current metadata is sufficient to produce RSS 1.0 feeds. See here for further information. We also defined a loose roadmap on top of the readme, where interoperability to DCAT and DCAT-AP has high priority.

 

Now we have some time to support you and work one on one and also prepare the configurations to help you set up the data releases. Lastly, we already received data from DNB and SUMO, so we will start to look into these more closely.

Thanks to all the beta-testers for your nice work.

We keep you posted.

Yours

DBpedia Association

The post Beta-Test Updates appeared first on DBpedia Association.

]]>
Keep using DBpedia! https://www.dbpedia.org/blog/keep-using-dbpedia/ Thu, 08 Feb 2018 14:17:31 +0000 http://blog.dbpedia.org/?p=693 Just recently, DBpedia Association member and hosting specialist, OpenLink released the DBpedia Usage report, a periodic report on the DBpedia SPARQL endpoint and associated Linked Data deployment. The report not only gives some historical insight into DBpedia’s usage, number of visits and hits per day but especially shows statistics collected between October 2016 and December […]

The post Keep using DBpedia! appeared first on DBpedia Association.

]]>
Just recently, DBpedia Association member and hosting specialist, OpenLink released the DBpedia Usage report, a periodic report on the DBpedia SPARQL endpoint and associated Linked Data deployment.

The report not only gives some historical insight into DBpedia’s usage, number of visits and hits per day but especially shows statistics collected between October 2016 and December 2017. The report covers more than a year of logs from the DBpedia web service operated by OpenLink Software at http://dbpedia.org/sparql/.  

Before we want to highlight a few aspects of DBpedia’s usage we would like to thank Open Link for the continuous hosting of the DBpedia Endpoint and the creation of this report

The graph shows the average number of hits/requests per day that were made to the DBpedia service during each of the releases.

The graph shows the average number of unique visits per day made to the DBpedia service during each of the datasets.

Speaking of which, as you can see in the following tables, there has been a massive increase in the number of hits coinciding with the DBpedia 2015–10 release on April 1st, 2016.

 

 

 

 

This boost can be attributed to an intensive promotion of DBpedia via community meetings, communication with various partners in the Linked Data community and Social media presence among the community, in order to increase backlinks.

Since then, not only the numbers of hits increased but DBpedia also provided for better data quality. We are constantly working on improving accessibility, data quality and stability of the SPARQL endpoint. Kudos to Open Link for maintaining the technical baseline for DBpedia.

The table shows the usage overview of last year.

The full report is available here.

 

Subscribe to the DBpedia Newsletter, check our DBpedia Website and follow us on Twitter, Facebook, and LinkedIn for the latest news.

Thanks for reading and keep using DBpedia!

Yours DBpedia Associaton

 

The post Keep using DBpedia! appeared first on DBpedia Association.

]]>
New DBpedia Release – 2016-10 https://www.dbpedia.org/blog/new-dbpedia-release-2016-10/ Tue, 04 Jul 2017 11:53:03 +0000 http://blog.dbpedia.org/?p=435 We are happy to announce the new DBpedia Release. This release is based on updated Wikipedia dumps dating from October 2016. You can download the new DBpedia datasets in N3 / TURTLE serialisation from http://wiki.dbpedia.org/downloads-2016-10 or directly here http://downloads.dbpedia.org/2016-10/. This release took us longer than expected. We had to deal with multiple issues and included […]

The post New DBpedia Release – 2016-10 appeared first on DBpedia Association.

]]>
We are happy to announce the new DBpedia Release.

This release is based on updated Wikipedia dumps dating from October 2016.

You can download the new DBpedia datasets in N3 / TURTLE serialisation from http://wiki.dbpedia.org/downloads-2016-10 or directly here http://downloads.dbpedia.org/2016-10/.

This release took us longer than expected. We had to deal with multiple issues and included new data. Most notable is the addition of the NIF annotation datasets for each language, recording the whole wiki text, its basic structure (sections, titles, paragraphs, etc.) and the included text links. We hope that researchers and developers, working on NLP-related tasks, will find this addition most rewarding. The DBpedia Open Text Extraction Challenge (next deadline Mon 17 July for SEMANTiCS 2017) was introduced to instigate new fact extraction based on these datasets.

We want to thank anyone who has contributed to this release, by adding mappings, new datasets, extractors or issue reports, helping us to increase coverage and correctness of the released data.  The European Commission and the ALIGNED H2020 project for funding and general support.

You want to read more about the  New Release? Click below for further  details.[expander_maker id=”1″ more=”Read more” less=”Read less”]

 Statistics

Altogether the DBpedia 2016-10 release consists of 13 billion (2016-04: 11.5 billion) pieces of information (RDF triples) out of which 1.7 billion (2016-04: 1.6 billion) were extracted from the English edition of Wikipedia, 6.6 billion (2016-04: 6 billion) were extracted from other language editions and 4.8 billion (2016-04: 4 billion) from Wikipedia Commons and Wikidata.

In addition, adding the large NIF datasets for each language edition (see details below) increased the number of triples further by over 9 billion, bringing the overall count up to 23 billion triples.

Changes

  • The NLP Interchange Format (NIF) aims to achieve interoperability between Natural Language Processing (NLP) tools, language resources and annotations. To extend the versatility of DBpedia, furthering many NLP-related tasks, we decided to extract the complete human- readable text of any Wikipedia page (‘nif_context’), annotated with NIF tags. For this first iteration, we restricted the extent of the annotations to the structural text elements directly inferable by the HTML (‘nif_page_structure’). In addition, all contained text links are recorded in a dedicated dataset (‘nif_text_links’).
    The DBpedia Association started the Open Extraction Challenge on the basis of these datasets. We aim to spur knowledge extraction from Wikipedia article texts in order to dramatically broaden and deepen the amount of structured DBpedia/Wikipedia data and provide a platform for benchmarking various extraction tools with this effort.
    If you want to participate with your own NLP extraction engine, the next deadline for the SEMANTICS 2017 is July 17th.
    We included an example of these structures in section five of the download-page of this release.
  • A considerable amount of work has been done to streamline the extraction process of DBpedia, converting many of the extraction tasks into an ETL setting (using SPARK). We are working in concert with the Semantic Web Company to further enhance these results by introducing a workflow management environment to increase the frequency of our releases.

In case you missed it, what we changed in the previous release (2016-04)

  • We added a new extractor for citation data that provides two files:
    • citation links: linking resources to citations
    • citation data: trying to get additional data from citations. This is a quite interesting dataset but we need help to clean it up
  • In addition to normalised datasets to English DBpedia (en-uris), we additionally provide normalised datasets based on the DBpedia Wikidata (DBw) datasets (wkd-uris). These sorted datasets will be the foundation for the upcoming fusion process with wikidata. The DBw-based uris will be the only ones provided from the following releases on.
  • We now filter out triples from the Raw Infobox Extractor that are already mapped. E.g. no more “<x> dbo:birthPlace <z>” and “<x> dbp:birthPlace|dbp:placeOfBirth|… <z>” in the same resource. These triples are now moved to the “infobox-properties-mapped” datasets and not loaded on the main endpoint. See issue 22 for more details.
  • Major improvements in our citation extraction. See here for more details.
  • We incorporated the statistical distribution approach of Heiko Paulheim in creating type statements automatically and providing them as additional datasets (instance_types_sdtyped_dbo).

 

Upcoming Changes

  • DBpedia Fusion: We finally started working again on fusing DBpedia language editions. Johannes Frey is taking the lead in this project. The next release will feature intermediate results.
  • Id Management: Closely pertaining to the DBpedia Fusion project is our effort to introduce our own Id/IRI management, to become independent of Wikimedia created IRIs. This will not entail changing out domain or entity naming regime, but providing the possibility of adding entities of any source or scope.
  • RML Integration: Wouter Maroy did already provide the necessary groundwork for switching the mappings wiki to an RML based approach on Github. Wouter started working exclusively on implementing the Git based wiki and the conversion of existing mappings last week. We are looking forward to the consequent results of this process.
  • Further development of SPARK Integration and workflow-based DBpedia extraction, to increase the release frequency.

 

New Datasets

  • New languages extracted from Wikipedia:

South Azerbaijani (azb), Upper Sorbian (hsb), Limburgan (li), Minangkabau (min), Western Mari (mrj), Oriya (or), Ossetian (os)

  • SDTypes: We extended the coverage of the automatically created type statements (instance_types_sdtyped_dbo) to English, German and Dutch.
  • Extensions: In the extension folder (2016-10/ext) we provide two new datasets (both are to be considered in an experimental state:
    • DBpedia World Facts: This dataset is authored by the DBpedia Association itself. It lists all countries, all currencies in use and (most) languages spoken in the world as well as how these concepts relate to each other (spoken in, primary language etc.) and useful properties like iso codes (ontology diagram). This Dataset extends the very useful LEXVO dataset with facts from DBpedia and the CIA Factbook. Please report any error or suggestions in regard to this dataset to Markus.
    • JRC-Alternative-Names: This resource is a link based complementary repository of spelling variants for person and organisation names. The data is multilingual and contains up to hundreds of variations entity. It was extracted from the analysis of news reports by the Europe Media Monitor (EMM) as available on JRC-Names.

 Community

The DBpedia community added new classes and properties to the DBpedia ontology via the mappings wiki. The DBpedia 2016-04 ontology encompasses:

  • 760 classes
  • 1,105 object properties
  • 1,622 datatype properties
  • 132 specialised datatype properties
  • 414 owl:equivalentClass and 220 owl:equivalentProperty mappings external vocabularies

The editor community of the mappings wiki also defined many new mappings from Wikipedia templates to DBpedia classes. For the DBpedia 2016-10 extraction, we used a total of 5887 template mappings (DBpedia 2015-10: 5800 mappings). The top language, gauged by the number of mappings, is Dutch (648 mappings), followed by the English community (606 mappings).[/expander_maker]

 Credits to

  • Markus Freudenberg (University of Leipzig / DBpedia Association) for taking over the whole release process and creating the revamped download & statistics pages.
  • Dimitris Kontokostas (University of Leipzig / DBpedia Association) for conveying his considerable knowledge of the extraction and release process.
  • All editors that contributed to the DBpedia ontology mappings via the Mappings Wiki.
  • The whole DBpedia Internationalization Committee for pushing the DBpedia internationalization forward.
  • Václav Zeman and the whole LHD team (University of Prague) for their contribution of additional DBpedia types
  • Alan Meehan (TCD) for performing a big external link cleanup
  • Aldo Gangemi (LIPN University, France & ISTC-CNR, Italy) for providing the links from DOLCE to DBpedia ontology.
  • SpringerNature for offering a co-internship to a bright student and developing a closer relation to DBpedia on multiple issues, as well as Links to their SciGraph subjects.
  • Kingsley Idehen, Patrick van Kleef, and Mitko Iliev (all OpenLink Software) for loading the new data set into the Virtuoso instance that provides 5-Star Linked Open Data publication and SPARQL Query Services.
  • OpenLink Software (http://www.openlinksw.com/) collectively for providing the SPARQL Query Services and Linked Open Data publishing infrastructure for DBpedia in addition to their continuous infrastructure support.
  • Ruben Verborgh from Ghent University – imec for publishing the dataset as Triple Pattern Fragments, and imec for sponsoring DBpedia’s Triple Pattern Fragments server.
  • Ali Ismayilov (University of Bonn) for extending and cleaning of the DBpedia Wikidata dataset.
  • All the GSoC students and mentors which have directly or indirectly worked on the DBpedia release
  • Special thanks to members of the DBpedia Association, the AKSW and the Department for Business Information Systems of the University of Leipzig.

The work on the DBpedia 2016-10 release was financially supported by the European Commission through the project ALIGNED – quality-centric, software and data engineering.

More information about DBpedia is found at http://dbpedia.org as well as in the new overview article about the project available at http://wiki.dbpedia.org/Publications.

Have fun with the new DBpedia 2016-10 release!

The post New DBpedia Release – 2016-10 appeared first on DBpedia Association.

]]>